A Posteriori Error Analysis of the Linked Interpolation Technique for Plate Bending Problems

نویسندگان

  • Carlo Lovadina
  • Rolf Stenberg
چکیده

We develop a posteriori error estimates for the so-called‘Linked Interpolation Technique’ to approximate the solution of plate bending problems. We show that the proposed (residual-based) estimator is both reliable and efficient. AMS subject classifications: Primary 65N30; Secondary 74S05.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Equivalent a posteriori error estimates for spectral element solutions of constrained optimal control problem in one dimension

‎In this paper‎, ‎we study spectral element approximation for a constrained‎ ‎optimal control problem in one dimension‎. ‎The equivalent a posteriori error estimators are derived for‎ ‎the control‎, ‎the state and the adjoint state approximation‎. ‎Such estimators can be used to‎ ‎construct adaptive spectral elements for the control problems.

متن کامل

Analysis of Rectangular Stiffened Plates Based on FSDT and Meshless Collocation Method

In this paper, bending analysis of concentric and eccentric beam stiffened square and rectangular plate using the meshless collocation method has been investigated. For detecting the governing equations of plate and beams, Mindlin plate theory and Timoshenko beam theory have been used, respectively, with the stiffness matrices of the plate and the beams obtained separately. The stiffness matric...

متن کامل

A posteriori error estimates for elliptic problems with Dirac measure terms in weighted spaces

In this article we develop a posteriori error estimates for general second order elliptic problems with point sources in twoand three-dimensional domains. We prove a global upper bound and a local lower bound for the error measured in a weighted Sobolev space. The weight considered is a (positive) power of the distance to the support of the Dirac delta source term, and belongs to the Muckenhoup...

متن کامل

ALGEBRAIC NONLINEARITY IN VOLTERRA-HAMMERSTEIN EQUATIONS

Here a posteriori error estimate for the numerical solution of nonlinear Voltena- Hammerstein equations is given. We present an error upper bound for nonlinear Voltena-Hammastein integral equations, in which the form of nonlinearity is algebraic and develop a posteriori error estimate for the recently proposed method of Brunner for these problems (the implicitly linear collocation method)...

متن کامل

MFS with RBF for Thin Plate Bending Problems on Elastic Foundation

In this chapter a meshless method, based on the method of fundamental solutions (MFS) and radial basis functions (RBF), is developed to solve thin plate bending on an elastic foundation. In the presented algorithm, the analog equation method (AEM) is firstly used to convert the original governing equation to an equivalent thin plate bending equation without elastic foundations, which can be sol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Numerical Analysis

دوره 43  شماره 

صفحات  -

تاریخ انتشار 2005